Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583855

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Subject(s)
Cell Proliferation , Cell Survival , Respiratory Distress Syndrome , Sevoflurane , Wound Healing , Sevoflurane/pharmacology , Humans , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Wound Healing/drug effects , Cell Survival/drug effects , A549 Cells , Cell Proliferation/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Movement/drug effects , Anesthetics, Inhalation/pharmacology , Cytokines/metabolism , Autophagy/drug effects , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology
2.
Biomark Res ; 12(1): 25, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355595

ABSTRACT

In recent decades, preterm birth (PTB) has become a significant research focus in the healthcare field, as it is a leading cause of neonatal mortality worldwide. Using five independent study cohorts including 1290 vaginal samples from 561 pregnant women who delivered at term (n = 1029) or prematurely (n = 261), we analysed vaginal metagenomics data for precise microbiome structure characterization. Then, a deep neural network (DNN) was trained to predict term birth (TB) and PTB with an accuracy of 84.10% and an area under the receiver operating characteristic curve (AUROC) of 0.875 ± 0.11. During a benchmarking process, we demonstrated that our DL model outperformed seven currently used machine learning algorithms. Finally, our results indicate that overall diversity of the vaginal microbiota should be taken in account to predict PTB and not specific species. This artificial-intelligence based strategy should be highly helpful for clinicians in predicting preterm birth risk, allowing personalized assistance to address various health issues. DeepMPTB is open source and free for academic use. It is licensed under a GNU Affero General Public License 3.0 and is available at https://deepmptb.streamlit.app/ . Source code is available at https://github.com/oschakoory/DeepMPTB and can be easily installed using Docker ( https://www.docker.com/ ).

3.
Clin Chem Lab Med ; 62(6): 1101-1108, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38278625

ABSTRACT

OBJECTIVES: The objective of our study was to evaluate serum CX3CL1/Fractalkine, a monocyte/macrophage chemoattractant expressed in cytotrophoblasts and decidual cells, as a predictive biomarker for the occurrence of preterm premature rupture of membranes (PPROM). METHODS: A case-control study of 438 pregnancies including 82 PPROM cases and 64 preterm labor with intact membranes cases with blood samples collected at first trimester, second trimester and delivery was conducted. The predictive ability of CX3CL1 and maternal risk factors for the occurrence of PPROM was assessed by receiver operating characteristic curve analysis. A second, independent cohort was prospectively constituted to confirm the case-control study results. RESULTS: First trimester CX3CL1 was significantly increased in PPROM cases when compared to matched controls. Multivariate regression analysis highlighted a significant difference for CX3CL1 measured during the first trimester (p<0.001). Alone, CX3CL1 predicts PPROM with a 90 % sensitivity and a specificity around 40 %. The area under the receiver operating characteristic curve for PPROM prediction were 0.64 (95% confidence interval: 0.57-0.71) for first trimester CX3CL1, and 0.61 (95% confidence interval: 0.54-0.68) for maternal risk factors (body mass index<18.5 kg/m2, nulliparity, tobacco use and the absence of high school diploma). The combination of CX3CL1 and maternal risk factors significantly improved the area under the curve: 0.72 (95% confidence interval: 0.66-0.79) (p<0.001). The results were confirmed on a second independent cohort. CONCLUSIONS: CX3CL1 is a promising blood biomarker in the early (first trimester) prediction of PPROM.


Subject(s)
Biomarkers , Chemokine CX3CL1 , Fetal Membranes, Premature Rupture , Humans , Female , Pregnancy , Chemokine CX3CL1/blood , Fetal Membranes, Premature Rupture/blood , Fetal Membranes, Premature Rupture/diagnosis , Biomarkers/blood , Adult , Case-Control Studies , ROC Curve , Pregnancy Trimester, First/blood , Risk Factors
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446230

ABSTRACT

Dry eye inflammation is a key step in a vicious circle and needs to be better understood in order to break it. The goals of this work were to, first, characterize alarmins and cytokines released by ocular surface cells in the hyperosmolar context and, second, study the role of NFAT5 in this process. Finally, we studied the potential action of these alarmins in ocular surface epithelial cells and macrophages via RAGE pathways. HCE and WKD cell lines were cultured in a NaCl-hyperosmolar medium and the expression of alarmins (S100A4, S100A8, S100A9, and HMGB1), cytokines (IL6, IL8, TNFα, and MCP1), and NFAT5 were assessed using RT-qPCR, ELISA and multiplex, Western blot, immunofluorescence, and luciferase assays. In selected experiments, an inhibitor of RAGE (RAP) or NFAT5 siRNAs were added before the hyperosmolar stimulations. HCE and WKD cells or macrophages were treated with recombinant proteins of alarmins (with or without RAP) and analyzed for cytokine expression and chemotaxis, respectively. Hyperosmolarity induced epithelial cell inflammation depending on cell type. NFAT5, but not RAGE or alarmins, participated in triggering epithelial inflammation. Furthermore, the release of alarmins induced macrophage migration through RAGE. These in vitro results suggest that NFAT5 and RAGE have a role in dry eye inflammation.


Subject(s)
Alarmins , Dry Eye Syndromes , Humans , Inflammation , Cytokines/metabolism , Dry Eye Syndromes/metabolism , Macrophages/metabolism , Transcription Factors/metabolism
5.
J Transl Med ; 21(1): 397, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37331963

ABSTRACT

BACKGROUND: Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS: To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1ß, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS: In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS: Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.


Subject(s)
Actins , Respiratory Distress Syndrome , Animals , Mice , Sevoflurane/pharmacology , Sevoflurane/metabolism , Sevoflurane/therapeutic use , Actins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Mice, Inbred C57BL , Lung/pathology , Respiratory Distress Syndrome/pathology , Cytokines/metabolism , Permeability , Models, Theoretical
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835482

ABSTRACT

At the feto-maternal interface, fetal membranes (FM) play a crucial role throughout pregnancy. FM rupture at term implicates different sterile inflammation mechanisms including pathways activated by the transmembrane glycoprotein receptor for advanced glycation end-products (RAGE) belonging to the immunoglobulin superfamily. As the protein kinase CK2 is also implicated in the inflammation process, we aimed to characterize the expressions of RAGE and the protein kinase CK2 as a candidate regulator of RAGE expression. The amnion and choriodecidua were collected from FM explants and/or primary amniotic epithelial cells throughout pregnancy and at term in spontaneous labor (TIL) or term without labor (TNL). The mRNA and protein expressions of RAGE and the CK2α, CK2α', and CK2ß subunits were investigated using reverse transcription quantitative polymerase chain reaction and Western blot assays. Their cellular localizations were determined with microscopic analyses, and the CK2 activity level was measured. RAGE and the CK2α, CK2α', and CK2ß subunits were expressed in both FM layers throughout pregnancy. At term, RAGE was overexpressed in the amnion from the TNL samples, whereas the CK2 subunits were expressed at the same level in the different groups (amnion/choriodecidua/amniocytes, TIL/TNL), without modification of the CK2 activity level and immunolocalization. This work paves the way for future experiments regarding the regulation of RAGE expression by CK2 phosphorylation.


Subject(s)
Casein Kinase II , Extraembryonic Membranes , Protein Processing, Post-Translational , Receptor for Advanced Glycation End Products , Humans , Casein Kinase II/metabolism , Extraembryonic Membranes/metabolism , Phosphorylation , Receptor for Advanced Glycation End Products/metabolism
7.
Geohealth ; 6(12): e2022GH000680, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36545343

ABSTRACT

Tungurahua volcano (Ecuador) intermittently emitted ash between 1999 and 2016, enduringly affecting the surrounding rural area and its population, but its health impact remains poorly documented. We aim to assess the respiratory health hazard posed by the 16-17 August 2006 most intense eruptive phase of Tungurahua. We mapped the spatial distribution of the health-relevant ash size fractions produced by the eruption in the area impacted by ash fallout. We quantified the mineralogy, composition, surface texture, and morphology of a respirable ash sample isolated by aerodynamic separation. We then assessed the cytotoxicity and pro-inflammatory potential of this respirable ash toward lung tissues in-vitro using A549 alveolar epithelial cells, by electron microscopy and biochemical assays. The eruption produced a high amount of inhalable and respirable ash (12.0-0.04 kg/m2 of sub-10 µm and 5.3-0.02 kg/m2 of sub-4 µm ash deposited). Their abundance and proportion vary greatly across the deposit within the first 20 km from the volcano. The respirable ash is characteristic of an andesitic magma and no crystalline silica is detected. Morphological features and surface textures are complex and highly variable, with few fibers observed. In-vitro experiments show that respirable volcanic ash is internalized by A549 cells and processed in the endosomal pathway, causing little cell damage, but resulting in changes in cell morphology and membrane texture. The ash triggers a weak pro-inflammatory response. These data provide the first understanding of the respirable ash hazard near Tungurahua and the extent to which it varies spatially in a fallout deposit.

8.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36232959

ABSTRACT

The roles of thioredoxin-interacting protein (TXNIP) and receptor for advanced glycation end-products (RAGE)-dependent mechanisms of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-driven macrophage activation during acute lung injury are underinvestigated. Cultured THP-1 macrophages were treated with a RAGE agonist (S100A12), with or without a RAGE antagonist; cytokine release and intracytoplasmic production of reactive oxygen species (ROS) were assessed in response to small interfering RNA knockdowns of TXNIP and NLRP3. Lung expressions of TXNIP and NLRP3 and alveolar levels of IL-1ß and S100A12 were measured in mice after acid-induced lung injury, with or without administration of RAGE inhibitors. Alveolar macrophages from patients with acute respiratory distress syndrome and from mechanically ventilated controls were analyzed using fluorescence-activated cell sorting. In vitro, RAGE promoted cytokine release and ROS production in macrophages and upregulated NLRP3 and TXNIP mRNA expression in response to S100A12. TXNIP inhibition downregulated NLRP3 gene expression and RAGE-mediated release of IL-1ß by macrophages in vitro. In vivo, RAGE, NLRP3 and TXNIP lung expressions were upregulated during experimental acute lung injury, a phenomenon being reversed by RAGE inhibition. The numbers of cells expressing RAGE, NLRP3 and TXNIP among a specific subpopulation of CD16+CD14+CD206- ("pro-inflammatory") alveolar macrophages were higher in patients with lung injury. This study provides a novel proof-of-concept of complex RAGE-TXNIP-NLRP3 interactions during macrophage activation in acute lung injury.


Subject(s)
Acute Lung Injury , Inflammasomes , Animals , Carrier Proteins/genetics , Cytokines/metabolism , Glycation End Products, Advanced/metabolism , Inflammasomes/metabolism , Macrophages, Alveolar/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , S100A12 Protein , Thioredoxins/genetics , Thioredoxins/metabolism
9.
Life (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35455039

ABSTRACT

Phthalates are reprotoxic pollutants that are omnipresent in the environment. Detectable in amniotic fluid, these compounds (with the most concentrated being mono-2-ethylhexyl phthalate (MEHP)) are in direct contact with fetal membranes (FMs). They can lead to the premature rupture of FMs by deregulating cellular and molecular pathways, such as, for example, the nuclear transcription factor peroxysome proliferator-activated receptor gamma (PPARγ) pathway. The objective was to study the impact of MEHP on the PPARγ pathway in FMs using amnion and choriodecidua across the three trimesters of pregnancy and the amniotic epithelial AV3 cell model by analyzing (i) PPARγ expression (mRNA and proteins) using RT-qPCR and Western blot assays; (ii) cytotoxicity and cell viability following MEHP treatment by lactate dehydrogenase (LDH) measurement and using Cell-counting Kit 8; and (iii) modulation by MEHP of PPARγ transcriptional activity (using a reporter gene assay) and PPARγ anti-inflammatory properties (by measuring IL6 and IL8 levels). PPARγ is expressed in the human amnion and choriodecidua during the three trimesters of pregnancy and in amniotic cells. In the AV3 cell line, MEHP is not cytotoxic and does not reduce cell viability, but it reduces PPARγ activity, here induced by a classical agonist without influencing its expression. MEHP also reduces PPARγ's anti-inflammatory properties. In conclusion, PPARγ signaling is dysregulated by MEHP; this paves the way for future explorations to highlight the hypothesis of phthalates as an amniotic PPARγ disruptor that can explain the premature rupture of FMs.

10.
Elife ; 112022 02 04.
Article in English | MEDLINE | ID: mdl-35119365

ABSTRACT

The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon that has been exacerbated. Beyond all the implied biological processes, inflammation is of primary importance and is qualified as 'sterile' at the end of pregnancy. In this study, complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants obtained from the altered (cervix zone) and intact fetal membranes at term and before labour were used. By cross-analysing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of toll-like receptor 4 (TLR4), an actor in pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: (1) the methylation of TLR4 and miRNA promoters and (2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3'-UTR of TLR4. Consequently, this study demonstrates that fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.


Subject(s)
Extraembryonic Membranes/metabolism , MicroRNAs/metabolism , Toll-Like Receptor 4/metabolism , 3' Untranslated Regions , Cells, Cultured , Epigenome , Female , Fetal Membranes, Premature Rupture/physiopathology , Humans , Inflammation/physiopathology , Pregnancy , Toll-Like Receptor 4/genetics , Transcriptome
11.
Dis Markers ; 2022: 1543742, 2022.
Article in English | MEDLINE | ID: mdl-35075374

ABSTRACT

BACKGROUND: Because of the implications of Receptor for Advanced Glycation End Products (RAGE) in keratoconus (KC), we describe a differential expression of RAGE transcripts and proteins in corneal tissues and tears of KC and healthy patients. METHODS: Using a case-controlled study, corneal epitheliums and tears of KC and healthy subjects were obtained during corneal collagen cross-linking and photorefractive keratectomy (PKR) and during usual consultations. Quantitative reverse transcription (RT-qPCR) and Western-Blot were performed to analyze RAGE transcripts and proteins' expression in corneal tissues and tears. RESULTS: One hundred and six patients were included in this study. The characteristics of the patients were as follows: 56 KC (25 corneal epithelium and 31 tears) and 50 control subjects (25 corneal epithelium and 25 tears). Transcripts of RAGE, HMGB1, and S100 family ligands were quantified by RT-qPCR, identifying a significantly higher expression of RAGE and HMGB1 in the healthy group than in the KC group (p = 0.03 and 0.04, respectively). Western Blot showed a significantly higher fl-RAGE expression in KC corneal epithelium than control (p < 0.001) and lower s-RAGE expression in KC tears than control (p = 0.04). CONCLUSIONS: Linked with the inflammatory process occurring in KC pathophysiology, we propose for the first time that the RAGE expression (total and truncated forms of receptor and ligands) in KC corneal tissues and tear samples provides viable biomarkers.


Subject(s)
Epithelium, Corneal/metabolism , Glycation End Products, Advanced/metabolism , Keratoconus/metabolism , Receptor for Advanced Glycation End Products/metabolism , Biomarkers/metabolism , Case-Control Studies , Cornea/metabolism , Female , Humans , Male , Tears/metabolism
12.
Acta Ophthalmol ; 100(1): 45-57, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33938134

ABSTRACT

PURPOSE: To conduct a systematic review and meta-analysis on the levels of oxidative stress markers and antioxidants in dry eye disease (DED) compared with healthy subject. METHOD: The PubMed, Cochrane Library, Embase, Science Direct and Google Scholar databases were searched on 10 January 2021 for studies reporting oxidative and antioxidative stress markers in DED and healthy controls. Main meta-analysis was stratified by type of biomarkers, type of samples (tears, conjunctival cells or biopsies), Sjögren's syndrome (SS) (patients with or without SS) and by geographical zones (Asia or Europe). RESULTS: We included nine articles, for a total of 333 patients (628 eye samples) with DED and 165 healthy controls (451 eye samples). There is an overall increase in oxidative stress markers in DED compared with healthy controls (standard mean deviation = 2.39, 95% confidence interval 1.85-2.94), with a significant increase in lipid peroxide (1.90, 0.69-3.11), myeloperoxidase (2.17, 1.06-3.28), nitric oxide synthase 3 (2.52, 0.95-4.08), xanthine oxidase/oxidoreductase (2.41, 1.40-5.43), 4-hydroxy-2-nonenal (4HNE) (4.75, 1.67-7.84), malondialdehyde (3.00, 2.55-3.45) and reactive oxygen species (1.31, 0.94-1.68). Oxidative stress markers were higher in tears, conjunctival cells and conjunctival biopsies of DED than controls. Even if small number of studies were included for antioxidants, catalase seemed to be decreased in DED compared with healthy controls (-2.17, -3.00 to -1.34), with an increase of antioxidants in tears of DED patients without SS (1.13, 0.76-1.49). CONCLUSION: Oxidative stress markers, and probably antioxidants, were dysregulated in DED, establishing a local oxidative environment in tears, conjunctival cells and tissues.


Subject(s)
Dry Eye Syndromes/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Biomarkers/metabolism , Humans , Oxidation-Reduction
13.
Biomedicines ; 9(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34572309

ABSTRACT

Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called "alarmins" or "damage-associated molecular patterns" (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.

14.
Int J Mol Sci ; 22(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361111

ABSTRACT

Maternal smoking is a risk factor of preterm prelabor rupture of the fetal membranes (pPROM), which is responsible for 30% of preterm births worldwide. Cigarettes induce oxidative stress and inflammation, mechanisms both implicated in fetal membranes (FM) weakening. We hypothesized that the receptor for advanced glycation end-products (RAGE) and its ligands can result in cigarette-dependent inflammation. FM explants and amniotic epithelial cells (AECs) were treated with cigarette smoke condensate (CSC), combined or not with RAGE antagonist peptide (RAP), an inhibitor of RAGE. Cell suffering was evaluated by measuring lactate dehydrogenase (LDH) medium-release. Extracellular HMGB1 (a RAGE ligand) release by amnion and choriodecidua explants were checked by western blot. NF-κB pathway induction was determined by a luciferase gene reporter assay, and inflammation was evaluated by cytokine RT-qPCR and protein quantification. Gelatinase activity was assessed using a specific assay. CSC induced cell suffering and HMGB1 secretion only in the amnion, which is directly associated with a RAGE-dependent response. CSC also affected AECs by inducing inflammation (cytokine release and NFκB activation) and gelatinase activity through RAGE engagement, which was linked to an increase in extracellular matrix degradation. This RAGE dependent CSC-induced inflammation associated with an increase of gelatinase activity could explain a pathological FM weakening directly linked to pPROM.


Subject(s)
Amnion/pathology , Epithelial Cells/pathology , Gene Expression Regulation/drug effects , Inflammation/pathology , Prenatal Exposure Delayed Effects/pathology , Smoke/adverse effects , Adult , Amnion/drug effects , Amnion/immunology , Amnion/metabolism , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Humans , Inflammation/chemically induced , Inflammation/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/metabolism , Receptor for Advanced Glycation End Products
15.
J Vis Exp ; (163)2020 09 24.
Article in English | MEDLINE | ID: mdl-33044446

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure and death in critically ill patients, and there is an urgent need to find effective therapies. Preclinical studies have shown that inhaled halogenated agents may have beneficial effects in animal models of ARDS. The development of new devices to administer halogenated agents using modern intensive care unit (ICU) ventilators has significantly simplified the dispensing of halogenated agents to ICU patients. Because previous experimental and clinical research suggested potential benefits of halogenated volatiles, such as sevoflurane or isoflurane, for lung alveolar epithelial injury and inflammation, two pathophysiologic landmarks of diffuse alveolar damage during ARDS, we designed an animal model to understand the mechanisms of the effects of halogenated agents on lung injury and repair. After general anesthesia, tracheal intubation, and the initiation of mechanical ventilation, ARDS was induced in piglets via the intratracheal instillation of hydrochloric acid. Then, the piglets were sedated with inhaled sevoflurane or isoflurane using an ICU-type device, and the animals were ventilated with lung-protective mechanical ventilation during a 4 h period. During the study period, blood and alveolar samples were collected to evaluate arterial oxygenation, the permeability of the alveolar-capillary membrane, alveolar fluid clearance, and lung inflammation. Mechanical ventilation parameters were also collected throughout the experiment. Although this model induced a marked decrease in arterial oxygenation with altered alveolar-capillary permeability, it is reproducible and is characterized by a rapid onset, good stability over time, and no fatal complications. We have developed a piglet model of acid aspiration that reproduces most of the physiological, biological, and pathological features of clinical ARDS, and it will be helpful to further our understanding of the potential lung-protective effects of halogenated agents delivered through devices used for inhaled ICU sedation.


Subject(s)
Halogenation , Intensive Care Units , Respiratory Distress Syndrome/therapy , Acute Lung Injury/pathology , Anesthesia , Anesthetics/pharmacology , Animals , Blood Gas Analysis , Capillary Permeability/drug effects , Disease Models, Animal , Female , Humans , Isoflurane/pharmacology , Lung/drug effects , Male , Oxygen , Respiration, Artificial , Swine
16.
Front Immunol ; 11: 1645, 2020.
Article in English | MEDLINE | ID: mdl-32849565

ABSTRACT

Context and Objectives: Inflammation is the leading mechanism involved in both physiological and pathological rupture of fetal membranes. Our aim was to obtain a better characterization of the inflammasome-dependent inflammation processes in these tissues, with a particular focus on the nucleotide-binding oligomerization domain (NOD)-like receptor, pyrin domain containing protein 7 (NLRP7) inflammasome. Methods: The presence of NLRP7 inflammasome actors [NLRP7, apoptosis-associated speck-like protein containing a CARD domain (ASC), and caspase-1] was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) in human amnion and choriodecidua at the three trimesters and at term. The protein concentrations were then determined by enzyme-linked immunosorbent assay in term tissues, with or without labor. The presence of Mycoplasma salivarium and Mycoplasma fermentans in human fetal membranes was investigated using a PCR approach. Human amnion epithelial cells (AECs) were treated for 4 or 20 h with fibroblast-stimulating lipopeptide-1 (FSL-1), a M. salivarium-derived ligand. Transcripts and proteins quantity was then measured by RT-quantitative PCR and Western blotting, respectively. NLRP7 and ASC colocalization was confirmed by immunofluorescence. Western blots allowed analysis of pro-caspase-1 and gasdermin D cleavage. Results: NLRP7, ASC, and caspase-1 transcripts were expressed in both sheets of human fetal membranes during all pregnancy stages, but only ASC protein expression was increased with labor. In addition, M. salivarium and M. fermentans were detected for the first time in human fetal membranes. NLRP7 and caspase-1 transcripts, as well as NLRP7, ASC, and pro-caspase-1 protein levels, were increased in FSL-1-treated AECs. The NLRP7 inflammasome assembled around the nucleus, and pro-caspase-1 and gasdermin D were cleaved into their mature forms after FSL-1 stimulation. Conclusion: Two new mycoplasmas, M. salivarium and M. fermentans, were identified in human fetal membranes, and a lipopeptide derived from M. salivarium was found to induce NLRP7 inflammasome formation in AECs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amnion/drug effects , Diglycerides/pharmacology , Epithelial Cells/drug effects , Inflammasomes/metabolism , Mycoplasma fermentans/metabolism , Mycoplasma salivarium/metabolism , Oligopeptides/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Amnion/immunology , Amnion/metabolism , Amnion/microbiology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/genetics , Caspase 1/metabolism , Cells, Cultured , Cesarean Section , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Female , Host-Pathogen Interactions , Humans , Inflammasomes/genetics , Mycoplasma fermentans/isolation & purification , Mycoplasma salivarium/isolation & purification , Parturition , Pregnancy , Pregnancy Trimesters , Signal Transduction
17.
Front Physiol ; 11: 581, 2020.
Article in English | MEDLINE | ID: mdl-32670078

ABSTRACT

CONTEXT: Sterile inflammation has been shown to play a key role in the rupture of the fetal membranes (FMs). Moreover, an early and exacerbated runaway inflammation can evolve into a preterm premature rupture of membranes and lead to potential preterm birth. In this context, we investigated the receptor for advanced glycation end products (RAGE), an axis implied in physiological sterile inflammation, in conjunction with two major ligands: AGEs and High-Mobility Group Box 1 (HMGB1). Our first objective was to determine the spatiotemporal expression profiles of the different actors of the RAGE-signaling axis in human FMs, including its intracellular adaptors Diaphanous-1 and Myd88. Our second goal was to evaluate the functionality of RAGE signaling in terms of FMs inflammation. METHODS: The presence of the actors (RAGE, HMGB1, Myd88, and Diaphanous-1) at the mRNA level was investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in the human amnion and choriodecidua at the three trimesters and at term. Measurements were conducted at two distinct zones: the zone of intact morphology (ZIM) and the zone of altered morphology (ZAM). Then, proteins were quantified using Western blot analysis, and their localization was evaluated by immunofluorescence in term tissues. In addition, pro-inflammatory cytokine secretion was quantified using a Multiplex assay after the treatment of amnion and choriodecidua explants with two RAGE ligands (AGEs and HMGB1) in the absence or presence of a RAGE inhibitor (SAGEs). RESULTS: The FMs expressed the RAGE-signaling actors throughout pregnancy. At term, RNA and protein overexpression of the RAGE, HMGB1, and Diaphanous-1 were found in the amnion when compared to the choriodecidua, and the RAGE was overexpressed in the ZAM when compared to the ZIM. The two RAGE ligands (AGEs and HMGB1) induced differential cytokine production (IL1ß and TNFα) in the amnion and choriodecidua. CONCLUSION: Considered together, these results indicate that RAGE signaling is present and functional in human FMs. Our work opens the way to a better understanding of FMs weakening dependent on a RAGE-based sterile inflammation.

18.
Front Physiol ; 11: 609, 2020.
Article in English | MEDLINE | ID: mdl-32655405

ABSTRACT

Preterm premature rupture of membranes (PPROM), defined as rupture of fetal membranes prior to 37 weeks of gestation, complicates approximately 2-4% of pregnancies and is responsible for 40% of all spontaneous preterm births. PPROM arises from complex pathophysiological pathways with a key actor: inflammation. Sterile inflammation is a feature of senescence-associated fetal membrane maturity. During specific steps of sterile inflammation, cells also release highly inflammatory damage-associated molecular pattern markers (DAMPs), such as high-mobility group box 1 (HMGB1) or S100A8/A9, known to link and activate the receptor for advanced glycation end products (RAGE). The objective of this study was to measure longitudinally during pregnancy concentrations of the soluble form of RAGE (sRAGE) and its main ligands (AGE, HMGB1, S100A8/A9) in blood specimens. We studied 246 pregnant women (82 with PPROM and 164 matched control pregnant women without complications) from a cohort of 7,866 pregnant women recruited in the first trimester and followed during pregnancy until delivery. sRAGE, AGE, HMGB1, and S100A8/A9 concentrations were measured in plasma and in serum-extracted extracellular vesicles from first trimester (T1), second trimester (T2), and delivery (D). In plasma, we observed, in both PPROM and control groups, (i) a significant increase of HMGB1 concentrations between T1 vs. T2, T1 vs. D, but not between T2 vs. D; (ii) a significant decrease of sRAGE concentrations between T1 and T2 and a significant increase between T2 and D; (iii) a significant decrease of AGE from T1 to D; (iv) no significant variation of S100A8/A9 between trimesters. In intergroup comparisons (PPROM vs. control group), there were no significant differences in time variation taking into account the matching effects. There was a correlation between plasma and serum-extracted extracellular vesicle concentrations of sRAGE, AGE, HMGB1, and S100A8/A9. Our results suggest that the rupture of fetal membranes (physiological or premature) is accompanied by a variation in plasma concentrations of sRAGE, HMGB1, and AGE. The study of RAGE and its main ligands in extracellular vesicles did not give additional insight into the pathophysiological process conducting to PPROM.

19.
Exp Cell Res ; 391(2): 112030, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32330509

ABSTRACT

Re-epithelialization of the alveolar surface is a key process of lung alveolar epithelial barrier repair after acute lung injury. The receptor for advanced glycation end-products (RAGE) pathway plays key roles in lung homeostasis, and its involvement in wound repair has been already reported in human bronchial epithelial cells. However, its effects on lung alveolar epithelial repair after injury remain unknown. We investigated whether RAGE stimulation with its ligands high-mobility group box 1 protein (HMGB1) or advanced glycation end-products (AGEs), alone or associated with RAGE inhibition using RAGE antagonist peptide, affects in vitro wound healing in human alveolar epithelial A549 cells. We further asked whether these effects could be associated with changes in cell proliferation and migration. We found that treatment of A549 cells with HMGB1 or AGEs promotes RAGE-dependent wound healing after a scratch assay. In addition, both RAGE ligands increased cell proliferation in a RAGE-dependent manner. Treatment with HMGB1 increased migration of alveolar epithelial cells at 12 h, independently of RAGE, whereas AGEs stimulated migration as measured 48 h after injury in a RAGE-dependent manner. Taken together, these results suggest that RAGE pathway is involved in lung alveolar epithelial wound repair, possibly through enhanced cell migration and proliferation.


Subject(s)
Epithelial Cells/cytology , Glycation End Products, Advanced/pharmacology , HMGB1 Protein/pharmacology , Lung/cytology , Receptor for Advanced Glycation End Products/metabolism , Wound Healing , A549 Cells , Cell Movement , Cell Proliferation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , In Vitro Techniques , Lung/drug effects , Lung/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction
20.
Invest Ophthalmol Vis Sci ; 61(3): 14, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32176265

ABSTRACT

Purpose: We used a human corneal epithelial cell (HCE) line to determine the involvement of the advanced glycation end products (AGEs) / receptor for AGEs (RAGE) couple in corneal epithelium wound healing. Methods: After wounding, HCE cells were exposed to two major RAGE ligands (HMGB1 and AGEs), and wound healing was evaluated using the in vitro scratch assay. Following wound healing, the HCE cells were used to study the influence of the RAGE ligands on HCE proliferation, invasion, and migration. Activation of the nuclear factor (NF)-κB signaling pathway by the AGEs/RAGE couple was tested using a luciferase reporter assay. Functional transcriptional regulation by this pathway was confirmed by quantification of expression of the connexin 43 target gene. For each experiment, specific RAGE involvement was confirmed by small interfering RNA treatments. Results: AGEs treatment at a dose of 100 µg/mL significantly improved the wound healing process in a RAGE-dependent manner by promoting cell migration, whereas HMGB1 had no effect. No significant influence of the AGEs/RAGE couple was observed on cell proliferation and invasion. However, this treatment induced an early activation of the NF-κB pathway and positively regulated the expression of the target gene, connexin 43, at both the mRNA and protein levels. Conclusions: Our results demonstrate that the RAGE pathway is activated by AGEs treatment and is involved in the promotion of corneal epithelial wound healing. This positive action is observed only during the early stages of wound healing, as illustrated by the quick activation of the NF-κB pathway and induction of connexin 43 expression.


Subject(s)
Corneal Injuries/physiopathology , Epithelium, Corneal/drug effects , Glycation End Products, Advanced/pharmacology , Receptor for Advanced Glycation End Products/physiology , Wound Healing/drug effects , Cell Line , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Connexin 43/genetics , Connexin 43/metabolism , Corneal Injuries/pathology , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium, Corneal/cytology , Epithelium, Corneal/injuries , Epithelium, Corneal/physiology , Glycation End Products, Advanced/administration & dosage , Glycation End Products, Advanced/physiology , HMGB1 Protein/administration & dosage , HMGB1 Protein/pharmacology , Humans , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/physiology , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...